Energy Systems Modelling & Long-Term Behaviour – Results from WP1

Mid-term event, June 2, 2021

TECNALIA - Diego García-Gusano

This project has received funding from the Horizon 2020 programme under grant agreement n°824418. The content of this presentation reflects only the author's view. The European Commission and INEA are not responsible for any use that may be made of the information it contains.

AGENDA

- An approach to TECNALIA's methodology
- Demand side Buildings' energy stock model
- City approach Long-term energy modelling
- Envisioning futures Scenario analysis
- Some findings & takeaway messages

An approach to TECNALIA's methodology

Scenario analysis to a

30 years vision for and business models demand side Estimate the impacts energy balance characterization ST 1.3.1 ST 1.3.4 ST 1.3.3 ST 1.3.2 Supply-side modelling: smart Scenario analysis to a 30 years vision for energy balance Modelling energy demand city technologies Future situation Current situation Bottom-up approach Top-down approach Business as Usual (BaU) scenario Decarbonization scenario Procedures to Estimate the impacts (Prioritization of long-term strategies and impact assessment of alternative energy scenarios) Technologies and strategies for the decarbonization Prioritization criteria and MCDA Impact Assessment of alternative longterm energy scenarios

Supply-side modelling:

smart city technologies

Modelling the energy

Demand in BUILDINGS

- Heating, electricity...
- GIS

Procedures to

☐ Modelling of the entire CITY

 Energy balances (demand in transport, residential, tertiary, public administration, industry...)

□ Scenario analysis

- Projections of the energy system (city) up to 2050
- Based on trends and socioeconomic drivers (PIB, population...)

☐ Prioritisation & impact assessment

Ranking measures/scenarios helps decision-making

Demand side - Buildings' energy stock model

☐ Demand modelling in BUILDINGS

- Energy characterisation of building stock
- Based on **ENERKAD**

Model results: energy demand (kWh/m²), emissions (kg CO₂/m₂), energy consumption (kWh/m²) (heating, cooling, electricity, DHW) per building use type or category **Outcomes:** GIS file, Excel database and CityGML

Demand side - Buildings' energy stock model

Data Pre Process ENERKAD® Modelling results

Results analysis

Model adjustment

City approach - Long-term energy modelling

■ Modelling of the entire CITY

- Energy balances (demand in transport, residential, tertiary, industry...)
- Buildings' energy characterisation is an input
- Based on <u>LEAP-OSeMOSYS</u> (Energy Systems Modelling, ESM)

Model results: final energy demand by sector, by energy service, by fuel type; Sankey diagrams; CO₂ emissions by sector, by energy service, by fuel type; energy generation by technology; primary resources; energy imports/exports...

■ Scenario analysis

- Projections of the energy system (city) up to 2050
- Based on trends and socioeconomic drivers (PIB, population...)

1. Creation of Business-as-Usual (BAU) scenario

- BAU: Baseline scenario that examines the consequences of continuing current trends in population, economy, technology and human behaviour (EEA)
- Current trends are nondesirable → changes are needed

Model results: PROJECTIONS of final energy demand by sector, by energy service, by fuel type; Sankey diagrams; CO₂ emissions by sector, by energy service, by fuel type; energy generation by technology; primary resources; energy imports/exports...

■ Scenario analysis

- Projections of the energy system (city) up to 2050
- Based on trends and socioeconomic drivers (PIB, population...)

2. Creation of ALTERNATIVE(s) scenario(s)

- Current trends are undesirable → changes are needed
- Alternative scenarios include actions / measures to transform the energy system into a more sustainable / decarbonised one

CO₂ savings between scenarios

Model results: PROJECTIONS of final energy demand by sector, by energy service, by fuel type; Sankey diagrams; CO₂ emissions by sector, by energy service, by fuel type; energy generation by technology; primary resources; energy imports/exports...

FINAL ENERGY DEMAND – BAU SCENARIOS

CO₂ EMISSIONS (from demand) – BAU SCENARIOS

Some findings & takeaway messages

☐ Demand in BUILDINGS

- Enerkad is a tool that provides general results for a wide range of buildings in a quick and easy way
- Comparison with real data or other studies shows a **good correlation with estimates**
- The accuracy and quality of input data is a determining factor when generating the model.
 Inaccurate geometry or incorrect building height data will cause the results to vary greatly when analysing individual buildings
- Comparisons with real monitored data show that older and worse insulated buildings have a much lower energy consumption than theoretical, while new buildings with a much better theoretical thermal performance consume more energy than estimated

☐ Modelling and Scenario analysis

- Energy system modelling (ESM) allows to model the city as a whole
- Scenario assessment allows to explore futures under the "what if..." rationale
- Business-as-Usual scenario is a baseline case, nondesirable, that projects the system to the future
- Alternative scenarios explore the implementation of actions / measures
- Scenario assessment is the basis to draw a long-term vision as well as creating robust energy and climate plans (e.g. SECAP) oriented towards decarbonisation

Thank you Get in touch for more information!

